2 "Thermodynamics" Posts

The Wreck of the Edmund Fitzgerald: Modeling Decomposition in Extreme Environments

Originally appearing on his 1976 album, Summertime Dream, “The Wreck of the Edmund Fitzgerald” is a powerful ballad written and performed by folk singer Gordon Lightfoot . In 1976, the song hit No. 1 in Canada on the RPM chart, and No. 2 in the United States on the Billboard Hot 100. The lyrics are a masterpiece, but there was one specific line that always stood out to me: “The lake, it is said, never gives up her dead.” Following the singer’s death in 2023, the song reconnected with older fans and reached new generations of listeners, making it to No. 15 on Billboard’s Hot Rock and Alternative category.

Listening to it again after all these years, I was inspired to research what that line meant and if there was any truth to it. What I discovered was very illuminating: Lake Superior really doesn’t give up her dead, and the science behind it is as haunting as the song itself.

It turns out that line is not poetic license. It’s physics.

When 29 souls went down with the Edmund Fitzgerald on November 10, 1975, they stayed down. Not because of some mystical property of the Great Lakes, but because of a perfect storm of temperature, pressure, and biology that we can model mathematically.


Note: This post contains scientific discussion of decomposition and forensic pathology in the context of maritime disasters.


“The lake, it is said, never gives up her dead / When the skies of November turn gloomy”


Read more →

Modeling Heat Capacity and Evaporation with Python: Why Water Warms Slowly but Cools Fast

Every summer, it feels like a small miracle when the pool finally warms up enough to swim. In Nevada, where the air temperature can sit above 100°F (38°C) for weeks, you’d expect the water to keep pace. Yet, somehow, it takes forever to warm, and only a few cool nights can undo all that progress.

The same phenomenon shows up in a stick of butter. Butter melts quickly, while margarine stays stubbornly firm even under the same heat. That’s not coincidence; it’s thermodynamics.

The butter versus margarine comparison is a staple example in nutrition science. It shows how the proportions of fat, water, and solids affect how much energy it takes to change temperature. Butter, with more fat and less water, heats up and melts quickly. Margarine, full of water and unsaturated oils, absorbs more energy before softening because water’s specific heat is much higher.


“A pool in the desert and a stick of margarine in the kitchen both tell the same story: water resists change.”


Read more →