2 "NumPy" Posts

Python Tip of the Week: Try SymPy When NumPy Isn't Enough

Most of us reach for NumPy whenever math shows up in a project. But sometimes, you don’t want approximate answers, you want exact math. That’s when you pull SymPy out of your programmer’s toolkit and get to work.

It’s easy to think of SymPy only in academic terms, like running physics simulations where small rounding errors can snowball into nonsense, or checking algebraic identities where a value such as 0.0000001 should really be treated as exactly 0. Those are valid use cases, but they barely scratch the surface.

In real-world business applications, imprecision can be just as costly. Financial software is the most obvious example, where a few pennies lost to rounding errors can add up to millions at scale. Supply chain and logistics systems can also suffer when tolerances or unit conversions drift slightly off, leading to incorrect shipments or mismatched inventory. Even common scenarios such as pricing models or tax calculations can go sideways if the math behind them is not exact.


“Floats guess. SymPy knows.”


This is where SymPy shines. To see the difference between floating-point approximations (Python or NumPy) and symbolic precision (SymPy), let’s look at a simple but very real example from finance.

Read more →

The Five-Second Rule Explored with Math & Python

You know the story: drop a cookie on the kitchen floor, swoop in before five seconds are up, and declare it safe. It is comforting. It is also wrong.


“Germs don’t wait five seconds. They start the party the instant your food hits the floor.”


The truth is much more interesting than the myth. Germs do transfer gradually, but they are especially fast at the beginning. That means if you want to know whether your floor-cookie is still edible, you need to think in curves, not in timers. And curves are something we can model.

Read more →